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A temporal laminate is a material whose parameters are homogeneous in space
but vary periodically and discontinuously in time. In this article, we consider wave
propagation through a temporal laminate where the period of the disturbance moving
through the media is large relative to ε the period of the lamination. It is worth noting
that the constituent materials and the mixing coefficient can be chosen so that the
effective speed in a temporal laminate is greater than the individual phase speeds.
We show that the analytic problem admits stable long wave modes, but shorter
wave modes grow as they pass through the laminate layers. Computing wave motion
through this composite medium using the standard upwind, finite-difference method
under the CFL condition for numerical wave propagation in the individual media will
produce growing short wave modes. Numerical results are degraded since accuracy is
quickly lost due to the growth of short waves which enter into the computation through
truncation and round-off error. A new CFL constraint is derived for a finite-difference
numerical scheme which will allow us to compute the stable long wave motion.
Numerical results are given for the direct numerical simulation of the homogenization
problem (ε → 0). c© 2002 Elsevier Science (USA)

Key Words: stability; composite materials; finite difference; CFL; discontinuous
coefficients; wave propagation; dynamic materials.

1. INTRODUCTION

In this paper, we consider wave propagation through a one-dimensional temporally lam-
inated medium. A temporal laminate is a material whose parameters are homogeneous in
space but vary periodically and discontinuously in time. As an example of such, consider
an electric transmission line where the inductance and capacitance fluctuate between two
states. The change in capacitance can be effected by the use of piezoelectric materials,
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while the inductance variation may be accomplished by varying the permeability in the
ferromagnetic material in which the line is embedded.

The governing equation for wave motion through a temporal laminate is

(ρzt )t − kzxx = 0.

The parameters ρ(t) and k(t) may be the density and stiffness of a slender elastic rod subject
to longitudinal disturbances z, or the dielectric permittivity and the reciprocal of magnetic
permeability of a medium through which a plane electromagnetic wave with electric field
component E = zt propagates. For a temporal laminate, we make the following specific
assumptions about the composite medium:

(a) at each point (x , t), the controls ρ and k can take either the values (ρ1, k1) or (ρ2, k2);
we refer to these as “material 1” and “material 2”;

(b) the period of the pattern is composed of two successive layers filled, respectively, by
materials 1 and 2, the volume fractions of these layers being m1 and m2 (m1, m2 ≥ 0, m1 +
m2 = 1);

(c) these materials are placed within alternating layers t = const.

On the interfaces t = nε and t = (n + m1)ε for n = 0, 1, 2, . . . , we require a regular tran-
sition of continuous disturbance z(x, t), and enforce kinematic and dynamic compatibility
conditions across the material interfaces.

Temporal laminates are a special subgroup of the class of composites that we call dynamic
materials. Dynamic materials are formations assembled from materials distributed on a mi-
croscale in time and in space. Optimal material design for static or nonsmart applications
generally results in the formation of composites where the design variables, such as material
density, stiffness, yield force, and other structural parameters are position dependent, but
invariant in time. The structures that result from these designs are the ordinary composite
materials, and their properties depend on the individual properties of the constituent mate-
rials and the microgeometry of the mixture. The effective property of a dynamic material,
however, also depends on the temporal arrangement, so by varying the spatio-temporal
parameters in the material mixture, we can effect a range of responses some of which are
unachievable through purely spatial material design [1–3].

A temporal laminate is one of the limiting cases of a spatio-temporal laminate. Spatio-
temporal laminates are defined by (a)–(b) with (c) replaced by the condition that the materials
are placed within alternating layers having the slope dx/dt = V on the (x, t)-plane. In a
temporal laminate, V = ∞. The other limiting case when V = 0 gives the ordinary static
laminate. Static laminates have been well studied analytically ([4–9]), and have been studied
computationally in [10] and [3], for example. The numerical study by this author in [3] is
of the class of subsonic spatio-temporal laminates where |V |< a1, a2 for ai = √

ki/ρi , the
characteristic speed in material i . The current study of wave motion in temporal laminates
is a step towards successfully computing wave motion in supersonic laminates (|V | > ai .)

It has been illustrated analytically and numerically [1–3] that the performance of struc-
tures can be improved by using spatio-temporal composites which match the time dependent
environment of dynamic problems. By appropriately controlling the design factors of a dy-
namic laminate, it is possible to selectively screen large domains in space–time from the
invasion of long wave disturbances, which may take the form of surges of stress waves and
other undesirable impulses in the structure or mechanism. With an ordinary static composite,
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this screening effect is impossible. This screening effect is responsible for the appearance
of such important phenomena as the elimination of the cutoff frequency in appropriately
activated electromagnetic wave guides. In addition, it is responsible for the appearance of
“left-handed” composite materials—materials which have been theorized, and only recently
physically realized, to reverse some known physical effects observed in ordinary materials
in response to electromagnetic radiation, such as the Doppler frequency shift and Cherenkov
radiation (see News Release NSF PR00-9).

In [1], a standard analytical homogenization procedure is used to calculate the effective
phase velocities and the governing differential equations in a spatio-temporal composite
when the period of the medium, ε, is much smaller than the wavelength of the initial
disturbance. Using the notation 〈ξ〉 = m1ξ1 + m2ξ2 and ξ̄ = m1ξ2 + m2ξ1, it is found that
〈z〉, the value of the disturbance z averaged over the period of the array, obeys the following
differential equation:

1

a2
1a2

2

[
V 2 − k̄

(
1̄

ρ

)]
〈z〉t t + 2V

[
ρ̄

(
1̄

k

)
−
(

1̄

a2

)]
〈z〉t x − ρ̄

(
1̄

k

)[
V 2 − 1

ρ̄
(

1̄
k

)
]
〈z〉xx = 0.

It is then straightforward to deduce that in temporal laminates (V = ∞), the effective gov-
erning equation is

〈z〉t t − 〈1/ρ〉〈k〉〈z〉xx = 0, (1)

and the effective wave velocities are

±
√

〈1/ρ〉〈k〉. (2)

We note that one can choose parameters ρi , ki such that the effective speed in the temporal
laminate is greater than the individual phase speeds in the constituent materials.

It is helpful to recast the second-order scalar problem as a first-order system in z and a
dual variable v:

zt − 1

ρ
vx = 0, (3)

vt − kzx = 0. (4)

In this formulation, the interface condition is that z and v remain continuous through the
transition; thus we are looking at a sequence of a pair of initial value problems. Letting
n = 0, 1, 2, . . . index the sequence, the IVP pair consists of the PDE system above for t ∈
[nε, (n + m1)ε] with (k, ρ) = (k1, ρ1) and data given at t = nε, followed by the system with
parameters (k2, ρ2) for t ∈ [(n + m1)ε, (n + 1)ε], and initial data given at t = (n + m1)ε.

In the exact solution to the analytic problem, the shorter wave components are amplified
as they go from one material layer to the next, though they do not grow within a region
of pure material. As the laminate period ε gets smaller, or as time gets larger these modes
will grow without bound. There is an inherent instability to the problem. However, we are
interested only in studying long wave motion through the medium. By “long,” we mean
disturbances consisting of modes with wave number ω such that εω is small enough that
these modes remain bounded in time. Our goal is to find a scheme that reproduces the stable
long wave motion in the limit ε → 0.
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This article proceeds as follows. In the next section, we prove that a general disturbance
imparted to a temporal laminate will exhibit inherent instability, with some wave modes
growing and longer wave modes remaining stable. In Section 3, we show that even under
the accepted CFL condition, which ensures stability for the wave problem in the individual
materials, the first-order finite difference approximation to the temporal lamination problem
may give unstable results. Long wave initial disturbances which are stable analytically can
be degraded in the computation due to the introduction of shorter wave modes coming from
round-off and truncation errors. We derive stability conditions for a computational scheme
which will damp out the shorter wave modes and thus retain the integrity of the numerical
results. In the final section, we conclude by giving a numerical example to support our
results.

2. INHERENT INSTABILITY OF THE ANALYTIC PROBLEM

The system of equations (3) and (4) can be decoupled into two advection equations in
the characteristic variables z − v/µ and z − v/µ:

(
z + v/µ

z − v/µ

)
t

+
(−a 0

0 a

)(
z + v/µ

z − v/µ

)
x

=
(

0
0

)
. (5)

We use µ to denote the material “impedances”
√

kρ. It is easily seen now that infor-
mation z − v/µ and z + v/µ travel along characteristic lines with respective character-
istic velocities ±a, where a = √

k/ρ, so that (z − v/µ)(x, t) = (z − v/µ)(x − at, 0) and
(z + v/µ)(x, t) = (z + v/µ)(x + at, 0). At any point in space–time z(x, t)= 1

2 [(z + v/µ) +
(z − v/µ)](x, t) and v(x, t) = µ

2 [(z + v/µ) − (z − v/µ)].
The wave equation with ρ and k constant is stable. An initial impulse consisting of a

single wave mode of wavenumber ω, (z, v)(x, t) = (z̄, v̄)eiωx at time t evolves according
to the growth or amplification matrix G so that (z, v)(x, t + �t) = G(ω, �t)(z, v)(x, t) =
Q−1S(ω, �t)Q. Here Q is the transformation from the primary variables z and v to the
characteristic variables z + v/µ and z − v/µ, and S is the growth matrix of the characteristic
variables,

Q =
(

1 1/µ

1 −1/µ

)
, S =

(
eiωa�t 0

0 e−iωa�t

)
,

since (z − v/µ)(x, t) = (z − v/µ)(x − at, 0) and (z + v/µ)(x, t) = (z + v/µ)(x + at, 0).
Thus,

G =
( 1

2 (eiωa�t + e−iωa�t ) 1
2µ

(eiωa�t − eiωa�t )

µ

2 (eiωa�t − eiωa�t ) 1
2 (eiωa�t + eiωa�t )

)
=
(

cos(ωa�t) i 1
µ

sin(ωa�t)

iµ sin(ωa�t) cos(ωa�t)

)
.

We note that G(ω, �t) = G(ωa�t). The eigenvalues of G (and S) are clearly e±iωa�t , thus
the norm of the eigenvalues is 1, regardless of a, �t , or ω. There are no growing modes
and the constant coefficient problem is unconditionally stable.

For the laminate problem, we consider mode growth of a wave pulse traveling through a
layer of material 1 for time �t1 = m1ε and then a layer of material 2 for a time �t2 = m2ε.
The interface condition is that z and v remain continuous throughout the transition; thus we
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are looking at a sequence of initial value problems. The initial data for the problem at the
interface of material 1 and 2 are thus G1(ωa1�t1)(z̄, v̄)eiωx , so the growth of a disturbance
with wavenumber ω is governed by the matrix

G1,2(ω, �t1, �t2) = G1,2(θ1, θ2) = G1(θ2)G1(θ1) = Q−1
2 S2(θ2)Q2 Q−1

1 S1(θ1)Q1

=
(

cos(θ2) i 1
µ2

sin(θ2)

iµ2 sin(θ2) cos(θ2)

)(
cos(θ1) i 1

µ1
sin(θ1)

iµ1 sin(θ1) cos(θ1)

)

=

 cos θ2 cos θ1 − µ1

µ2
sin θ1 sin θ2 i

[
1
µ1

sin θ1 cos θ2 + 1
µ2

cos θ1 sin θ2

]
i[µ1 sin θ1 cos θ2 + µ2 cos θ1 sin θ2] cos θ2 cos θ1 − µ2

µ1
sin θ1 sin θ2


 ,

where

θi = ωai�ti = ωai miε.

(The angular frequency of the disturbance in material i is aiω, so θi is a measure of the
disturbance frequency relative to the frequency of the laminate ε−1.) In terms of the trans-
mission coefficients, T and T̃ , of a disturbance moving from one material to the next, as
computed in the appendix, the amplification matrix is

(
T1,2 cos(θ1 + θ2) + T̃ 1,2 cos(θ1 − θ2)

i
µ1

[T1,2 sin(θ1 + θ2) + T̃ 1,2 sin(θ1 − θ2)]

iµ1[T2,1 sin(θ1 + θ2) + T̃ 2,1 sin(θ1 − θ2)] T2,1 cos(θ1 + θ2) + T̃ 2,1 cos(θ1 − θ2)

)
.

We can detect instability and stability by looking at the spectrum of this matrix. If ω is
such that the spectrum of G1,2 is greater than 1, then this mode is unstable as the energy in
this mode increases and is stable otherwise. We note that Floquet analysis can also be used
for this problem. The eigenvalues of G1,2 are essentially equivalent to eνε where ν is the
Floquet exponent such that

(z̄
v̄

)
(ω, t) = eνε

(z̄
v̄

)
(ω, t − ε).

Thus, |eνε| > 1 implies that the solution grows in time.
The determinant of G1,2 is 1, and

T ≡ trace(G1,2) = 2 cos θ1 cos θ2 − R sin θ1 sin θ2

= (1 + R/2) cos(θ1 + θ2) + (1 − R/2) cos(θ1 − θ2)

= (1 + R/2) cos(θ1(1 + α)) + (1 − R/2) cos(θ1(1 − α)) = T(θ1), (6)

where

α = θ2/θ1 = a2m2/a1m1, (7)

and

R = µ1

µ2
+ µ2

µ1
. (8)
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Note that R ≥ 2 with equality holding only when µ1 = µ2. The physics of the problem
defines the fixed parameters R and α; θ1 varies with the wave modes. The eigenvalues of
G1,2 are the roots of the characteristic equation σ 2 − Tσ + 1:

σ± = T ± √
T2 − 4

2
.

If ω is such that |T| ≤ 2, |σ+| = |σ−| = 1, so this wave mode is stable. If ω is such that
|T| > 2, then |σsgn(T)| > T/2 > 1 and the ω mode is unstable.

When there is no contrast in impedance between material 1 and material 2 (R = 2), all
modes are stable since the magnitude of T is bounded by 2.

Consider the case R > 2. From (6),

dT
dθ1

= −(1 + α)(1 + R/2) sin(θ1(1 + α)) − (1 − α)(1 − R/2) sin(θ1(1 − α)),

d2T
dθ2

1

= −(1 + α)2(1 + R/2) cos(θ1(1 + α)) − (1 − α)2(1 − R/2) cos(θ1(1 − α)).

When ω = 0, dT
dθ1

= 0 and d2T
dθ2

1
(0)< 0, so T has a local maximum at θ1 = 0. Since T(0) =

2, there exists δ > 0, such that for |ω| ≤ δ, T < 2 and these modes are stable.
On the other hand, when θ1 = π/(1 + α), and R > 2, the trace of matrix G1,2 is −(1 +

R/2) + (1 − R/2) cos(π(1 − α)/(1 + α)), which can range between −(1 + R/2) + (1 −
R/2) = − R < −2 and −(1 + R/2) − (1 − R/2) = −2. The latter value is attained only
if α is such that (1 − α)/(1 + α) = n for n an odd integer. This would require α = (1 −
n)/(1 + n). This is impossible for α > 0. Hence, we are guaranteed that for wave modes
in a small enough neighborhood of ω = π/(1 + α)(a1m1ε) (i.e., with wavelengths that are
O(a1m1ε)) we have |T| > 2 and hence amplitude growth.

From the preceding discussion, we may state the following: There is inherent instability
for the initial value problem of wave propagation through temporal laminates of contrasting
impedance (µ1 �= µ2). Long wave disturbances remain stable, while disturbances with wave
lengths of the order of the material pattern are unstable. Energy that is pumped into system
at frequency O(1/ε) to create the laminate is converted into energy of waves of comparable
frequency and the amplitude of these oscillations grow.

Figure 1 below displays the spectrum of the amplification matrix G1,2 as a function of
the ratio of ν, the wavelength of the disturbance (= 2π

ω
), to ε (∼ the laminate “wavelength”),

and as a function of θ1, which indicates the ratio of the wave frequency in material 1 to
that of the laminate. The two arguments are related according to ν/ε = 2πa1m1/θ1. For
the laminate in this computation, the parameters are (k1, ρ1) = (1, 1), (k1, ρ2) = (10, 9),
m1 = 0.5, hence α = 1.054093, R = 9.592242. It is illustrated in this figure that disturbances
with wavelengths greater than O(ε) remain stable, while other shorter wave disturbances
will become unstable.

3. NUMERICAL METHOD FOR LONG WAVE PROPAGATION

In homogenization, one is concerned with the ε → 0 limit, so in the temporal laminate
problem the wave impulse travels through more and more layers in finite time. In our work,
we are interested in the behavior of disturbances whose wavelengths are long relative to
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FIG. 1. Spectrum of the growth matrix for the analytic problem.

the period of the medium, i.e., (1/ω)/ε large or ωε small, where ε is the wavenumber of
the disturbance. From the analysis in Section 2, it is clear that for initial data made up of
such modes, the problem is well posed. However, there will be difficulty in advancing the
problem numerically even when the initial data is so restricted. This is because round-off,
interpolation, and truncation errors introduce spurious disturbances into the computation.
These perturbations will inevitably contain shorter wave modes which will be amplified by
the due nature of the problem, and the computational results will be degraded.

We employ a standard first-order, upwind, finite-difference approximation to solve the
system (3), (4) (or (5)). This numerical method adds numerical viscosity to the solution.
We find that by appropriately controlling the size of the mesh width relative to the material
property pattern, enough diffusion can be produced to damp modes so that they never grow
during the numerical computation.

Consider a spatially uniform finite-difference grid with grid cells [x j−1/2, x j+1/2]. Let
�x denote the width of these cells and x j = (x j−1/2 + x j+1/2)/2 denote the cell center. We
take alternate time steps of size �t1 = m1ε and �t2 = m2ε. Thus, material properties are
constant within a space–time cell volume, and a single time step takes us from one material
interface to the next. The nth time level is denoted by tn and is the upper boundary of the nth
individual material layer. The values of z and v at the grid points x j at time tn are denoted
by zn

j , v
n
j , and these values simultaneously represent the approximations to z and v at those

points in space–time, as well as the values of z and v averaged over cell j at time tn . We use
ρn, kn, µn, . . . to denote the values of the respective material parameters between times tn
and tn+1 that is, in the (n + 1)st material layer.



352 SUZANNE L. WEEKES

Integrating the conservation law (5) over the j th space–time cell volume from time tn to
time tn+1 gives(

z + v

µn

)n+1

j

=
(

z + v

µn

)n

j

+ an

�x

∫ tn+1

tn

[(
z + v

µn

)(
x j+1/2, t

)

−
(

z + v

µn

)(
x j−1/2, t

)]
dt (9)

(
z − v

µn

)n+1

j

=
(

z − v

µn

)n

j

− an

�x

∫ tn+1

tn

[(
z − v

µn

)(
x j+1/2, t

)

−
(

z − v

µn

)(
x j−1/2, t

)]
dt. (10)

Conservative techniques distinguish themselves from each other by their approximations
to the fluxes

∫
z, v(x j+1/2, t). Since our equations (5) are linear, we calculate the values of

z + v/µ, z − v/µ along the cell interfaces in a straightforward manner by tracing charac-
teristics. Thus,∫ tn+1

tn

(z + v/µn)
(
x j+1/2, t

) = 1

an

∫ x j+1/2+a j �t

x j+1/2

(z + v/µn)(x, tn) dx,

∫ tn+1

tn

(z − v/µn)
(
x j+1/2(t), t

) = 1

an

∫ x j+1/2

x j+1/2−a j �t
(z − v/µn)(x, tn) dx,

where �tn = tn+1 − tn . Since zn
j , v

n
j are cell-averaged, cell-centered values of z and v in the

j th cell, the first-order reconstruction of the profiles are piecewise constant taking on the
values ·nj in cell j . Equations (9) and (10) are approximated by

zn+1
j + vn+1

j

µn
= zn

j + vn
j

µn
+ an�tn

�x

[(
zn

j+1 + vn
j+1

µn

)
−
(

zn
j + vn

j

µn

)]

zn+1
j − vn+1

j

µn
= zn

j − vn
j

µn
− an�tn

�x

[(
zn

j − vn
j

µn

)
−
(

zn
j−1 − vn

j−1

µn

)]
,

and by combining the equations above, the system (3), (4) is approximated by the solutions
to the finite-difference method,

zn+1
j = zn

j + 1

ρn

�tn
2�x

[
vn

j+1 − vn
j−1

]+ an�tn
2�x

(
zn

j+1 − 2zn
j + zn

j−1

)
, (11)

vn+1
j = vn

j + kn
�tn
2�x

[
zn

j+1 − zn
j−1

]− an�tn
2�x

(
vn

j+1 − 2vn
j + vn

j−1

)
, (12)

and is accurate up to O(�t, �x).
For a, k, and ρ constant in time, this scheme is stable under the CFL restriction a�tn/

�x ≤ 1. We note also that the scheme has built in numerical viscosity since it approximates
the PDE system

zt − 1

ρ
vx = (1 − λ)

a�x

2
zxx , (13)

vt − kzx = (1 − λ)
a�x

2
vxx , (14)

up to O(�t2, �x2) when λ = a�t
�x is less than unity.
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THEOREM 3.1. Let α = a2m2/a1m1, and R = µ2/µ1 + µ1/µ2. Then the scheme (11),

(12) above is stable for the temporal laminate problem when �x is such that

a1m1
ε

�x
≤ min{1, 1/α, λ̄}. (15)

The relevant quantities are defined as

λ̄ =




1 if R = 2,

λ� if λ� ≤ λ0, R �= 2,

λ��, if λ� > λ0, R �= 2,

and

λ0 = 2(1 + α)

α(R + 6)
, λ� = 1 + α

4α
− |1 − α|

4α

√
R − 2

R + 2
, λ�� = 2

√
α2 + Rα + 1 − (α + 1)

α(R − 2)
.

Proof. To study the stability of the scheme, we perform a von Neumann analysis and
look at the effect of the scheme on individual Fourier modes with wavenumber ω,

(z
v

)
(x, tn) =

(z̄
v̄

)
eiωx .

By expressing the scheme as

(z
v

)n+1

j
=
(

1 − λn 0

0 1 − λn

)(z
v

)n

j

+
(

λn/2 −λn/2µn

−λnµn/2 λn/2

)(z
v

)n

j−1
+
(

λn/2 λn/2µn

λnµn/2 λn/2

)(z
v

)n

j+1
,

it is easy to see that

(z̄
v̄

)n+1

j
= Gn(θ)

(z̄
v̄

)n

j
,

where

Gn =
(

pn ibn

icn pn

)
.

The entries of the matrix are

λn = an�tn/�x, pn = 1 − λn + λn cos(θ),

bn = λn sin(θ)/µn, cn = λnµn sin(θ),

where θ = ω�x . The eigenvalues of Gn are (1 − λn) + λne±iθ . The spectrum of Gn is
therefore bounded by 1 in absolute value for all θ when λn ≤ 1, and det(Gn) = 1 − 2λn(1 −
λn)(1 − cos(θ)) lies between 0 and 1. Wave modes do not grow in amplitude through a pure
material.
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However, as a disturbance goes from time tn to time tn+2 under our scheme through a
layer of material 1 followed by a layer of material 2, say, the modes grow or decay according
to

(z̄
v̄

)n+2

j
= G2(θ)G1(θ)

(z̄
v̄

)n

j
,

where the amplification matrix is

G(θ) = G2(θ)G1(θ) =
(

p2 ib2

ic2 p2

)(
p1 ib1

ic1 p1

)
. (16)

The eigenvalues σ± of G(θ) solve the characteristic equation σ 2 − Bσ + C = 0, where
B = trace(G) and C = det(G) are both real numbers. Now |C | = |det(G1)||det(G2)| ≤ 1,
for 0 ≤ λ1, λ2 ≤ 1, so if B2 − 4C ≤ 0, then σ± = 0.5(B ± i

√
4C − B2), and |σ±|2 = |C |2 ≤

1 for all θ . Thus, we can ensure that the spectrum of G is less than or equal to 1 if λ1, λ2

are such that B2 − 4C ≤ 0 for all θ .
For stability, it thus suffices to find λ1, λ2 ≤ 1 such that B2 − 4C ≤ 0 for all θ . From

Eq. (16),

trace(G) = B = 2p2 p1 − (b2c1 + b1c2),

det(G) = C = (p2
2 + b2c2

)(
p2

1 + b1c1
)
.

Let λ ≡ λ1 and αλ = λ2 whence α = a2m2/a1m1. Then the first stability restriction is that

λ ≤ min{1, 1/α}. (17)

The condition B2 − 4C ≤ 0 is equivalent to

(2p2 p1 − (b2c1 + b1c2))
2 − 4

(
p2

2 + b2c2
)(

p2
1 + b1c1

)≤ 0

⇔ (b2c1 − b1c2)
2 − 4(p1c2 + p2c1)(p1b2 + p2b1) ≤ 0

⇔ λ4α2(R2 − 4) sin4 θ − 4λ2 sin2 θ [1 + Rα + α2 − λα(1 − cos θ)(α + 1)(R + 2)]

− 4λ2 sin2 θ [α2λ2(1 − cos θ)2(R + 2)] ≤ 0

⇔ λ2α2(R2 − 4) sin2 θ − 4[1 + Rα + α2 − λα(1 − cos θ)(α + 1)(R + 2)]

− 4[α2λ2(1 − cos θ)2(R + 2)] ≤ 0

⇔ λ2α2(R + 2)[(R − 2) sin2 θ − 4(1 − cos θ)2]

+ 4αλ(R + 2)(1 − cos θ)(1 + α) − 4[1 + Rα + α2] ≤ 0,

where R = µ1/µ2 + µ2/µ1 ≥ 2. Define the function f (λ, θ) as follows:

f (λ, θ) = λ2α2(R + 2)[(R − 2) sin2 θ − 4(1 − cos θ)2]

+ 4αλ(R + 2)(1 − cos θ)(1 + α) − 4[1 + Rα + α2]. (18)

We must find λ > 0 such that f (λ, θ) ≤ 0 for θ ∈ [0, π ].
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When R = 2, that is, no impedance contrast, we have

f (λ, θ) = −16[αλ(1 − cos θ)]2 + 16(1 + α)[αλ(1 − cos θ)] − 4(1 + α)2

= −4[αλ(1 − cos θ) − 2(1 + α)]2 ≤ 0.

The only stability restriction in this case is (17), thus it suffices to say λ̄ = 1 as in the
statement of the theorem.

Henceforth, assume R > 2. For any given λ, f has extrema at θ solving

∂ f

∂θ
= 2αλ(R + 2) sin θ [2(1 + α) + αλ((R + 2) cos θ − 4)] = 0.

Thus, when θ = 0, π or when

cos θ̃ = 4αλ − 2α − 2

(R + 2)αλ
, (19)

f attains its local extrema. The right-hand side of the expression above is always less than
or equal to 1, so θ̃ exists when cos(θ̃) = 4αλ − 2α − 2

(R + 2)αλ
≥ −1. That is, when λ ≥ λ0, for

λ0 = 2(1 + α)

α(R + 6)
. (20)

One may check that ∂2 f
∂θ2 (λ, 0) > 0, so there is a local minimum at θ = 0; thus when λ ≥ λ0,

θ̃ is the local and absolute maximum on [0, π ].
From (18), f (λ, 0) = − 4(1 + Rα + α2) and

f (λ, π) = f (λ, 0) + 8αλ(1 + α − 2αλ),

so f (λ, π) ≥ f (λ, 0) iff λ ≤ 1 + α
2α

. Since λ0 < 1 + α
2α

, we may conclude that

• for λ ≤ λ0, the maximum value of f is f (λ, π);
• for λ > λ0, the maximum value of f is f (λ, θ̃),

(R − 2)[(αλ)2(R − 2) + 4(α + 1)(αλ) − 4α], (21)

using (19) and (18).

We must check for what λ these maximum values are nonpositive for all θ ∈ [0, π ].
First, f (λ, π) ≤ 0 for

λ ≤ λ� = 1 + α

4α
− |1 − α|

4α

√
R − 2

R + 2
, λ ≥ 1 + α

4α
+ |1 − α|

4α

√
R − 2

R + 2
.

When R > 2, (1 + α)/4α > λ0, so we focus on the first inequality above and conclude that
if λ� < λ0, it is guaranteed that f (λ, θ) is non-positive for 0 < λ ≤ λ�, but will be positive
for λ� < λ < λ0. On the other hand, if λ� ≥ λ0, it is guaranteed that f (λ, θ) is non-positive
for 0 < λ ≤ λ0, and possibly beyond.

Next, from (21), f (λ, θ̃) ≤ 0 when λ ≤ λ��, for

λ�� = −2(1 + α) + 2(
√

α2 + Rα + 1)

α(R − 2)
. (22)
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If λ� > λ0, then 0 > f (λ0, π) = f (λ0, θ̃ ). Thus, λ0 < λ��, and we may then say f (λ, θ) is
non-positive for 0 < λ ≤ λ��.

Thus, the second stability restriction for is that

λ ≤ λ̄,

where

λ̄ =
{

λ� if λ0 > λ�

λ�� otherwise.

This, together with the defintion λ̄ = 1 when R = 2 and (17), proves the theorem.
Besides the addition of numerical viscosity to the system of equations, one can consider

another mechanism acting to give stability of the new scheme. As we mentioned in Section 2,
disturbances with wavelengths greater than O(ε) will remain stable, while shorter wave
disturbances may become unstable. Since the shortest wavelength that can be resolved on
the grid is 2�x , by choosing �x large enough to obey the CFL restriction in (15), we
are bounding from below the ratio of the computationally realizable wavelengths to the
laminate frequency ε, thus pushing us further into the stable zone.

Figures 2 and 3 display the spectrum of the numerical amplification matrix G as a func-
tion of the ratio of ν, the wavelength of the disturbance, to ε, and as a function of θ . The
two arguments are related according to ν

ε
= 2πa1m1/λ1θ . For this laminate, the parame-

ters are (k1, ρ1) = (1, 1), (k2, ρ2) = (10, 9), m1 = 0.5, hence α = 1.054093, R = 9.592242.

FIG. 2. Spectrum of the growth matrix under the traditional constraint max(λ1, λ2) = 1.
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FIG. 3. Spectrum of the growth matrix under the newly derived stability restriction in (15).

Figure 2 shows that under the traditional CFL conditions where we take max (λ1, λ2) = 1,
shorter wavelengths are amplified. Figure 3 shows that under the new CFL constraints in
(15), where λ̄ = 0.360352 for this example, the scheme remains stable for all wavelengths.

4. NUMERICAL RESULTS AND DISCUSSION

We conclude this article by presenting the results of some numerical computations which
illustrate the stability/instability effects of computing the temporal laminate problem. Con-
sider the temporal laminate problem (ρzt )t − kzxx , with parameters

(k1, ρ1) = (1, 1), (k2, ρ2) = (10, 9), m1 = 0.5, (23)

and initial data

z(x, 0) = e−x2
, zt (x, 0) = 0. (24)

The period of the laminate is 0.01. These smooth initial data have a support of width
greater than 4. Figures 4 and 5 below show the numerically averaged solution 〈z〉. This
computation is performed with the scheme given in the previous section using the upper
limit of the stability constraint in (15). In this case λ̄ = 0.360352, which determines the grid
size for the computation. We use a trapezoidal rule to approximate 〈z〉 j , which is z(x j , ·)
averaged over a period of the laminate. Thus, for the qth period, which goes from t = t2q
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FIG. 4. Averaged solution to the temporal laminate problem with initial data (24), parameters (23), and
stability constraint (15).

FIG. 5. Contour plot up to time 4.995 of the evolution of the averaged solution to the temporal laminate
problem with initial data (24), parameters (23), and stability constraint (15).
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to t2q+2,

〈z〉 j = 1

2

(
m1z2q

j + z2q+1
j + m2z2q+2

j

)
.

Recall that t2q+1 − t2q = m1ε and t2q+2 − t2q+1 = m2ε with m1 + m2 = 1. The averaged
solution is shown after traveling through 500 laminate layers. The 500th laminate spans
the time interval [4.99, 5], so the solution is represented as time 4.995. We see very stable
behavior. In the lower plot of Fig. 4, we have zoomed in on the left-going D’Alembert wave.
For the data used, the theoretical homogenization speed (2) is 1.748015, so at time 4.995 the
average disturbance should travel a distance 8.7313 from the origin. The numerical results
and the theory agree quite well.

Figure 6 shows the same problem computed up to time 0.075 with the constraint that
max(λ1, λ2) = 1. The instability due to the growth of the smaller wave modes is apparent
even through just seven laminate layers. Computing beyond this time is pointless, as the
unstable modes destroy the solution.

Note that in the example used, the effective wave speed 1.748015 is greater than the
speeds in the individual materials, which are 1 and 1.0541. The homogenization speed
predicted by the theory is

√〈1/ρ〉〈k〉. Thus, it is easy to show that the effective speed is
greater than the individual phase speeds if and only if

−2�ρ�k < ρ1�k − k2�ρ < 0, (25)

FIG. 6. Instability at time 0.075 in the solution of the temporal laminate problem with initial data (24),
parameters (23), and �x such that min(λ1, λ2) = 1.
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where �ρ = ρ2 − ρ1 and �k = k2 − k1. Thus, in an electromagnetic application, by varying
the permeability and permittivity temporally, we can make electromagnetic signals travel
faster than they would in either pure medium. The parameters that we used in the compu-
tational examples in Figs. 4 and 5 satisfy the conditions in (25) since �ρ = 8, �k = 9 and
ρ1 = 1, k2 = 10.

The numerical approach developed here is useful for problems where homogenization
techniques are difficult to apply, e.g., for problems on finite domains and for the checker-
board spatio-temporal configuration in the (x, t) plane. Moreover, by the change of vari-
ables τ = t − x/V and ζ = x , the fast-range (supersonic) laminate problem with |V | > ai

becomes a temporal laminate problem in the (ζ, τ ) plane,

ρzτ + 1

V
vτ = vζ ,

1

k
vτ + 1

V
zτ = zζ .

The methods used to study the temporal laminate problem can then be applied to the
investigation of the instability properties of the supersonic problem. The development of
an appropriate numerical method will be the subject of another article.

In this work, it has been made clear that energy plays an important and interesting role
in wave propagation through temporal and supersonic laminates. Prompted by this finding,
we consider further novel energy issues in [11].

APPENDIX

Reflection and Transmission Coefficients

Consider wave motion, governed by (ρzt )t − kzxx = 0, through a material, homogeneous
in space, with material values given by

(k, ρ) =
{

(k1, ρ1) for t < 0,

(k2, ρ2) for t < 0.

We investigate the waves that result when an incident wave traveling through material 1,
experiences the switch in material values at time t = 0, and now is moving in material 2.
Without loss of generality, the analysis is carried out for the case of a disturbance s(x + a1t)
moving at velocity −a1.

At the interface t = 0, we require continuity of the disturbance and its momentum:

lim
t→0−

z(x, t) = lim
t→0+

z(x, t), (26)

lim
t→0−

ρ1
∂z

∂t
(x, t) = lim

t→0+
ρ2

∂z

∂t
(x, t). (27)

In general, a disturbance will take the form

z(x, t) = f1(x − a1t) + g1(x + a1t), t < 0, (28)

z(x, t) = f2(x − a2t) + g2(x + a2t), t > 0, (29)
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where ai = √
ki/ρi is the speed of sound through material i . From our assumption on the

nature of the disturbance in material 1, it is clear that f1 = 0 and g1(x) = s(x). The interface
compatibility conditions, (26), (27), are then

s(x) = f2(x) + g2(x),
(30)

ρ1a1s ′(x) = ρ2a2(g
′
2(x) − f ′

2(x)).

Integrating this latter equation with respect to x gives

µ1s(x) = µ2(g2(x) − f2(x)), (31)

where µ1 = ρi ai is called the material impedance. By solving (30) and (31) together, we
get that

f2(x) = T1,2s(x), g2(x) = T̃ 1,2s(x),

where

T1,2 = µ2 + µ1

2µ2
, T̃ 1,2 = µ2 − µ1

2µ2
.

So, by (28) and (29), the solution is

z(x, t) = T1,2 s(x + a2t) + T̃ 1,2 s(x − a2t), t > 0,

z(x, t) = s(x + a1t), t < 0.

That is, on experiencing the material switch, the incident wave s breaks into waves with
amplitudes magnified by the amounts T̃ 1,2 and T̃ 1,2 (transmission coefficients). Similarly,
for an initial disturbance s(x − a1t), moving through the material with parameters (ρ1, k1),
and experiencing a switch to parameters (ρ2, k2) at time t = 0, the solution is

z(x, t) = T1,2 s(x − a2t) + T̃ 1,2 s(x + a2t), t > 0, (32)

z(x, t) = s(x − a2t), t < 0. (33)

For a disturbance in the dual variable v, replace T (T̃ )1,2 by T (T̃ )2,1. For example, v(x, t) =
T2,1 s(x − a2t) + T̃ 2,1 s(x + a2t) for t > 0 when v(x, t) = s(x − a2t) for t < 0.

Note that by looking at the coefficient of x , it is clear that a wave of a given wavenumber
gives birth to new waves of the same wavenumber. That is, no new wavenumbers should
be observed.
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